Infrared Image Segmentation using Adaptive FCM Algorithm Based on Potential Function
نویسندگان
چکیده
Traditional Fuzzy C-means segmentation algorithm requires to set clustering number in advance, and to calculate image clustering center by the iterative arithmetic. So the traditional algorithm is sensitive to the initial value and the computation complexity is high. In order to improve the traditional Fuzzy Cmeans algorithm, this paper presents an infrared image segmentation method using adaptive Fuzzy Cmeans algorithm based on potential function. The presented algorithm can directly determine the optimal clustering number and clustering center for infrared image to be segmented by the potential function. After calculating the membership matrix of pixels in the infrared image by the fuzzy theory, the final segmented image is obtained through the fuzzy clustering. The experiments show that the presented algorithm in the paper could determine the optimal clustering number of the infrared image adaptively, and ensure the accuracy of segmentation, while significantly reducing the computation speed and complexity of the algorithm.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملAdaptive Fuzzy C-means Algorithm with Spatial Information for Image Segmentation
This paper considers the problem of partitioning noisy images into different regions by fuzzy clustering approach. Based on two fuzzy c-means (FCM) algorithms (FCM S1 and FCM S2), we propose four adaptive algorithms (FCM S11, FCM S12, FCM S21 and FCM S22) which utilize the high correlation of image pixels to increase the algorithms’ robustness to noise. Unlike existing algorithms, our algorithm...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کامل